联名同款欧美工业品VIPA 207-1BA00
联名同款欧美工业品VIPA 207-1BA00
上海荆戈工业控制设备有限公司是国内优质的欧洲进口工业件代理采购商。客户遍及能源化工行业,食品医疗行业,汽车钢铁等各工业行业领域。
我们保证交付的所有产品均直接国外原厂采购,上海海关正规清关,每单包裹均可提供上海海关出具的报关单和原产地工会出具的正规原产地证明。
热烈欢迎新老客户致电询价(*≧▽≦)~
hydac N 15 DM 002 Nr.1251590
Stemmann 6043424
ELECTRONICON E62.P14-242CR0
Bucher QXV43-020R
Debnar D-01-5909-100KA PR72 100kA/0-14 mA AC (GV) Skala 0..100kA Amperemeter m.Gleichrichter
Honsberg VFR-008GM013
VIPA 207-1BA00
movinor LH055-4-C-1-0-0-X-0-X-2
WUERTH 9850771
legrand 4876
Druck DPI705 0-2MPa
Baumer POG10 DN 1024 I + FSL1 Materialnr 11075579
WUERTH 61394226
Hoentzsch B099/953
Klaschka 132807-200 WIDENT/P-40fv-8x1Zl1G/200
Niedax BK14
OWIS 31.063.1581;MT 60-15-X-MS
igus 14240.10.200.0 igus® e-kette Serie 14240
mann-hummel 4942153111
Schlegel MTI
Heraeus 80132480
WUERTH 715732100
DEUTSCHMANN LOCON 24-0360-H08I Artikel-Nr.V2391
BTR 11070813 KRA-SR-F10/21, 24 V AC/DC
REFCO TCK1000 9881111
M+S EPM 50 C U Hydr. Motor
ASA-RT s.r.l. ADS-R
HBM 1-PX455
Red Lion CUB5SNK0
Ismet ISTU 1600
ZAE Typ: W110-0002/46-OVO-1:1-250
Bonfiglioli A 20 2 UH35 F1B 7.3 P90 VB
Krautzberger 010-0455
Elektra 7AA80M 04K 0,55 kw 1380n
SIEMENS 7UM6215-2EB91-0AE0 L0A
Gordonbrush 722024- 2”X24”, 3/8” HANDLE DIAMETER/.016 POLY FILL
WUERTH 071441 00
IBS IBSPW08
BALLUFF BTL7-P511-M0127-Z-S32
PH GE-LR-42-G 1 1/2"
heidenhain 376880-45
FLURO-Gelenklager GmbH FCL0160040401,Gelenkkopf GILXSW 16 x 1,5
PMA RL40-110-42300-000
PERMA a-nr:101444
NORD SK12063AZ-71L/4MS
Hoffmann 626106 8
GEWEFA 92.09.016.001 Kontrolldorn HSK-A 50 Ø 32
WUERTH 071535 80
WUERTH 715311110
hydac 909806 ENS 3116-2-0410-004-K
Tecsis 14262405;Typ TFT35(TEP11X221178)
walton W 05.032 S
Honsberg HD2KO1-015GM015E+FLEX-HD2K-ITLO
STROMAG 51-125-BM2Z-899 Nr.151−07874
WEBER 093.0079 CBB; T-3A
fischer NK10500000010000
WUERTH 715 72 59
AVS-Romer EGV-111-B96-3/4BP-00
heidenhain 635816-01
LAPPORT NO.509 ID-100336
KNOERZER 38/4/3,Druckfeder aus 1.4310 d=0,40 De=4,4 Lo=17,5 n=8,5
SYRON DFC1405-01
LINATOR AG type: KPS 3/6-00 ser.-no. 080807 part-no. 236-1-52-00
BAUMUELLER 00384292 mit Tacho GHTS 406 6V 1000 1/min
Ac-motoren FCPA 80 A 4
HBM 1-C9C/200N
EES SSM16A/1
Fluid Concept E105AV25///751D
Honsberg HD2KO1-025GM060
PIL Sensoren P42-150-SET/M30-UI2P-RS232(220S);(P42-M3A-2D-1G1-220S)
SKF CARR 40X500X2/D24DB
GUTEKUNST VKM-12278
SUPERIOR KMT093F10
DMN SK20F/2D-71L4 TF/2D+DL 250-1 EXF
burkert VALVE 2/2 BURKERT TYPE 6606 00137746
N-TRON 316TX
AFAG 50259276 Linearförderer HLF25-M 230V/50Hz
MASONEILAN 400072448-826-0000
WOERNER KFE-A/E/C/W/X/250/X/N
Nordson 7116900
Stuewe IS4-65x95
Kirchner & Tochter DDW-DS31
OPTOSCAN ARGO 04-80VL L8 TF0 M12
GMC KINAX WT707
EBERLE Controls GmbH LSW-3/020
Burster 8712-25
TRAPOROL 500137 ARS48.0
heidenhain 1065932-11
WUERTH 699100538
Ahlborn ZT9431KV
perma-tec 106922 perma PRO C MP-6 basic system (with connection cable PRO C M12 5 m) Content: 1 x perma PRO C drive 1 x connection cable PRO C M12 5 m 1 x distributor PRO MP-6 1 x connection cable PRO MP-6 14 cm 1 x PRO bracket (for wall mounting)
Thermocoax 9402 260 00379 FK 2
Tollok TLK110 48*62
GUTEKUNST D-180-01
NUOVA G14;CE IV Brass CW614N G.3/4" ISO 228 G.1" ISO 228 EPDM (-50 / +150 °C) 20,00 bar 2991,02 Kg/h 0 °C CO2
Reckmann 106798 EBL = 2000 mm
KOBOLD VKP-2018R250
Proxitron IKL015.33GH 2319D-15
WUERTH 6134892
Industrietechnik SF1E
GAMMA GSTSPPS02(Length)850x(Width)545MM-CS (L)= LENGTH mm (H) WIDTH mm (MEASURE OF THE MAT)
Bartec 283952 17-8865-472222003000 Temp. begrenzer DTL III Ex AC100-240V; Pt100 16A/8A Relaisausgang
SCHNEIDER XUJK803538
Honsberg UR3K-010GM050
Fuchs TKFA05, 300X300X115mm
MEROBEL 127441-00
KAPSTO GPN 300 F 5
Camozzi MX3-3/4-FR0004
rollex V10038202 200 - 50x1,5 N2 A 8 M 8 x 15 RO= 328 RL= 330 EL= 349 AL= 379
FASOP CLS-K-63
Klaschka 20.18-52-100
MORGAN-REKOFA 1920375
specken drumag 258SD
cme CME Motor E 48/63 – KW 1,7 2P with connector V400 50Hz shaft with key
ASA-RT ATB GK100/40K/AINK
Spieth MSR 16.1,5
Rehfuss 805.01240.00453.0 SR240L-90L/4-BR04
ReSatron GmbH RS ST 1,Nr:04.10.12102001
heidenhain 329987-06
ASUTEC ASMS-10-EW-08-100
Klaschka HAD-11ms60b1-5sd7,Sach-Nr.133205
BOWMAN PK600-4541-8
OTT-JAKOB 9510452631
PINET 16-1-3631
Multi-Contact S5N 04.0004
Comem EM8DA
WOERNER VPA-B/8/0/W/N/20/20/20/20/V
FAG XCB71901-C-T-P4S-UL
Funke TPL 00-K-30-22,NR:511760
Rohde RG-1S.140.84
Emmegi 36531A, PIK 200
Honsberg VOR-025GM0450-SR
Friedrichs FE B20.025.L1-P
ITW 79010-01 CASCADE ASSY, HP-404, RMA-303
WUERTH 071401 579
Noding P121-ED6-231R
HBM 1-C6A/5MN
TORWEGGE FPRO-030-11-7-K08-ZZ
Duplomatic DU-0550904
Chiaravalli TL 14M-28S-37
ULTRAFILTER MFP 07/30 G2 028773
WUERTH 071463 40
Mahle PI 21010-057 EPDM;239.414.4
FLURO FIL0120070204
PFAFF M5-1-1A-3-367-0-N-T60x9
AVENTICS 5725550220 CD12-5/2XX-DO-024DC-I-G012-G012-EN175301
MKT BZ-IG M 12-0 vz Nr. 03630101
Tartler EK30-0249
STROMAG 51_17.5_BM1Z_699G
Grossenbacher 1210217
Bonfiglioli 710210027
Fibro 262.1.0600.016
schwingmetall 33660 part-no:3946109000
VISAM Ursprungs zertifikat
HAINBUCH 2097/0010 10001514
AirCom R035-01B
DISIBEINT PVIB902500
hennlich 67/1/1 d=3,60 De=21,6 Lo=28,1
Seika XB1I Sensor N4 (-15°...+90°) PGL, Elektronik vergossen
GROSCHOPP Z841
Pneumax B151238
HBM 1-BM40
MAGPOWER M212189 -SMCL-25MS1
Spieth MSF 35.1,5
Norgren SPC/070317/1960
Honeywell 1LS244-4C 580824
WUERTH 61396325
Goetze 76.90H-75-NB60
Perske KNS50.11-2D;01247293
PEAK-System IPEH-002029
PEAK IPEH-004038
Stoerk ST710-JB1BA.10
Duerr 5R1451010
heidenhain 810415-01
Bayer Typ DLP40/7011-2-D2-MA-B-E2-ET-A
AMMtech AM20-0DAD31
heidenhain 689698-03
HAM PRAZISION Ring H 21,00 grey,Article-no:45-4031-01900-080-012
Steinel SZ 8568.25
heidenhain 376880-04
Elesa+ganter 128-100-ST
Rexroth R480618599
SIEMENS 7MF1567-3CD00-1AA1
Hoffmann 627391 8
BALLUFF BTL5-H110-M0850-P-S94
WIKA ARV-2-VU-L120/8-T29A
TECHAP 860 4070 SL7K PN10 DN100/ ANSI 4
engmatec 1552-57-000
ODU Steckverbindungssysteme GmbH & Co. KG 181.134.000.301.000
NIBCO NL99J5A TM595CSR66LL 1 THRD BALL W/MT LK CS
WINKEL 200.054.001
Schweiger S4FM02L4BF0700-1100
Stoerk TF K 6x100mm 0/600°C an Spitze 3m
Phoenix 2811297
Sensortechnics CTE7003GY4-X
Salzer AVA8-065
TC Direct 405-357
Phoenix 1452699
SCHNEIDER XS112B3PAM12
Walther 710210
LOWARA PLM90CA/322
SIBA 2000513.5
heidenhain MT25P ID:353077-01
Kerb-Konus Art.-Nr. 620 000 100.000, M10
Vahle Vahle DSW 2/40 168151
GUTEKUNST D-207G
JUMO TYP 404327 TN43004878 F-NR.0212009801015370007
Sera 16024289 C409.2-50e Pro+
HanseLifter GE0023547
IC AUTOMATION IACT.UNISP.EQN/PR-M23/M23/4m
SCHMERSAL AZM 415-STS30-02
CAMLOC 50E91-12AGV
Multi-Contact 23.3020-21 SLB4-G
OMAL DAN0030411S
JUMO 902044/20-380-1003-1-8-50-104-26/000
Heraeus 80132480
WUERTH 61323201
BARKSDALE 0602-038 L2H-H204-WS :-45~93℃ Temperaturschalter
NERIMOTORI DNB0T100A61-B34 T100A6-B34-1,5kW-1000
Ahlborn ZA1312NA10
SCHMERSAL AZM 415-22ZPK-M20 24VAC/DC
igus 26.05.100.0
lechler 490.646.1Y.CC.00.0
SCHNEIDER KSB63SM48 63A
Schmidt CPS 15.1 ø6 ø6
FEMA DWR25
ENSAT 338 000 080.147 OKS1765
Hydreco B1319132021 MC1909B2B25D
Proxitron Art.-No.2229H-5 IKZ 182.28 H1
aqua signal 1854003000
TRAMAG 101083-15 EI150N/66-1,5
SMEM MOTORS TYPE T3A80B 4POLES B5 KW0,75
CAMCO 350RGD6H24-150
wieland TIME M8-1 81.020.0002.0
ODU 945.000.001.000.137
GARLOCK MEC01-11714
Astech HMC05136006
Beck 901.11 121M4(150mbar±10%)
acm BRL906/3F S/N 63251
SPM SPM SLD733CP M8 3mKabel
G.Bee KSL75-65-16-B-OH
Beck 984M.373114B
REGIOLUX 55772364100;PF 2/36 EVG
Siemnes 8WA1-820
Sommer SF24
WUERTH 710008
IC AUTOMATION IACT.UNISP.SC/60m
MGV SPH1013-4821
AREVA T&D 6915235411
ODU 656.163.002.001.000 50087025
Hydropa 10470100DR / 11448
heidenhain 606 684-P1
LORENZ D-DR2493/M450-G225
WUERTH 71513757
Beck 984M.523304
Releco C10-A10X/DC24V R
Buehler NT-M-XP-MS-2M12-370-2S-KN-KT
应用示例
在机床上必须保证加工工件持续不变的高表面质量。为此需要持续监控冷却润滑剂输送管道的系统压力。利用压力传感器能可靠地检测压力,当偏离规定的压力范围时在几毫秒内关闭机床。
在很多储罐和锅炉中必须连续测量液体的液位高度。因此将使用超声波传感器,它能够无关介质的颜色、透明度和表面特性进行测量。它们能探测几乎所有 (也包括隔音) 材料及液体、颗粒和粉末构成的对象。
传感器技术
压力传感器可量应用于过程和工厂自动化中,也可以应用于储罐以及分配器系统中的压力控制。冷却润滑剂、液压油和气动系统等过程介质的监控对生产工艺有重要影响。
采用不同工作原理的传感器适合用于测量液位
■ 超声波传感器从上方进入储罐,它们不接触介质。
■ 电容式传感器从上方进入储罐,它们接触介质。
■ 磁致伸缩式传感器可以从上方或下方进入储罐。它的位置传感器 接触介质干井校准器作为温度标准,被许多校准实验室和各种工业域广泛使用。,干井校准器的轴向温度均匀性一般不如(往往远远不如)液体恒温槽。垂直温度梯度对校准的影响到底有多?为什么应该考虑使用计量炉来替代干井和液槽?
1、轴向温度均匀性及其对校准误差的影响
干井部和底部的散热速率不同于中间。这是因为与相比,底部隔热更好,不受环境效应的影响。所以在干井内就存在垂直方向的温度梯度。在干井的设计中,尽量在插块的长度范围内实现热量分布,来补偿这种梯度。然而,由于轴向温度均匀性在不同温度下有所变化,所需的热量分布时刻在变化,所以实现以上目的非常困难。
干井中温度计的读数是干井插块中传感器范围内检测到的温度平均值。PRT传感器的具有不同的长度,并且在其护套中的位置也略有不同。将不同类型的传感器(例如将较短的高灵敏度热电偶或热敏电阻与较长的PRT传感器)进行比对,会发生明显的轴向位置差异,使得比较结果受轴向梯度的影响比较。因此,干井式校准器的轴向温度不均匀性对校准误差具有显著的影响。
▲ 图2 660 °C下使用不同PRT时的轴向温度均匀性
▲ 图3 计量炉在不同温度下的轴向温度均匀性
▲ 图4 PRT比对校准,元件长度*相同,660 °C,干井
▲ 图5 PRT元件长度不同时在660 °C下的比对校准结果
2、计量炉有何不同?
为了降低校准误差以及提高现场可用校准器的性能,福禄克计量校准部开发了一种具有双区控制的校准器,称为“计量炉”。计量炉采用了多种新技术,与干井相比,总体性能幅提高。的改进是每个计量炉的整个温度量程内具有优异的轴向温度均匀性。这一改进得益于能够自动调节部区域温度的技术,在任何温度设置下都能程度减小两个温区之间的温差。
3、计量炉与干井式校准器的轴向均匀性比较
实验表明,使用同一干井、在相同温度下、使用两支不同传感器尺寸的PRT时,测量结果变化明显。图2所示为典型干井较差的轴向均匀性。从图中可以看出,测量均匀性的温度计的检测元件短,均匀性表现差,因为每个元件都是对其长度范围内检测到的温度进行平均。从图2和图3可以看出,计量炉的性能具有明显不同在90年代,人们从事计量学工作的方式是,通过仔细的工作建立基本单位,如欧姆、伏特、法拉等,然后再用定标实验来扩展其应用范围。定标就是给量建立一个标尺,其内容是建立基本单位的精已知的倍数。在电学计量中,常用的定标技术是比率。比率就是从某一等的一个量,按比例求出同一个量另一个等的数值。
由于没有国家的比率标准作为依据来校准其它的比率标准,所以对比率装置的评定是一种独立的实验。比率实验必须周密地设计和实施,以便考虑到实验中所有重要的误差来源。作为量的一个值和另一个值之间关系的表达式,比率是无量纲的。
人们一直有一种倾向,认为比率装置不需要校准,对它没有溯源性的要求。这是不对的,因为要能够准地、精密地实现某一个量的某一给定的比率,需要适当的设备、环境和技术。所以,谨慎的计量学家会通过对比率装置进行校准,或者与别的比率装置校准过的其它设备进行比较,来校验比率的准度。
非比率定标技术
用非比率实验建立基本量的倍数的经典例子,是如图9-1所示的用来得到标准千克的倍数和分数的比较实验。
▲ 图9-1 定标和比率
串联电池
电学计量中的一个例子是,使用几个标准电池串联起来,以建立一个等于标准电池平均电压n倍的电压。然后,使用开尔文-瓦利分压器(福禄克公司的720A),用这个已知电压来对另一个10V电平的电压进行标定(stand-ardize)1827年,欧姆在研究电流的工作中发现了用他的名字命名的欧姆定律,为所有现代模拟电路理论和电学测量奠定了基础。1863年,英国科学促进会(British Association)的一个委员会定欧姆的数值为一段规定的铜线的电阻,并称为英制欧姆或B·A·欧姆(British Association Ohm)。1884年,在巴黎举行的国际电气技师会(International Congress 0f Electricians)采用所谓的法定欧姆(1egal Ohm)作为对B·A·欧姆的修正,并将其定义为在0℃的温度下,截面积为1mm2、高106 cm的汞柱的电阻。这个定义后来修改为“质量为 g,高为106.3 cm、截面积恒定的汞柱对于不变的电流所产生的电阻”。
早期的电学实验发现,不同金属的导电率是不同的,并且注意到导体的电阻正比于其导电通路的长度,反比于导体横截面的面积。由于易于获得,所以早期电学实验中使用的电阻器常常是用铁丝作成的。随着这些实验工作变得更加精细,这种电阻器的缺点,如温度系数高等就变得很明显了。
在研究了其它各种可用的金属材料的特性,并发现其不适于制作电阻器以后,人们的注意力转向了各种合金材料。1884年,爱德华·惠斯登(Edward Weston)发现了两种合金,现在称为康铜和锰铜。它们具有低的电阻温度系数和比较高的电阻值等很好的特性。然而,人们发现康铜这种含有55%的铜和45%的镍的合金,由于在和铜相连接时具有比较高的热电动势,不适合用来制作在仪器中使用的电阻器。而相反,锰铜(含有84%的铜、12%的镁、4%的镍)对铜具有很低的热电动势,约2μV/℃。这种材料过去曾经、而且现在仍然广泛用于制作仪器和标准电阻器。
此后,人们又开发了各种其它的台金,进一步改善了其温度系数的特性。其中之一,埃弗诺姆镍铬合金(Evahm)就用来制造今天的校准仪器中使用的多数精密线绕电阻器。依据制作工艺的不同,锰铜和埃弗诺姆镍铬合金在25℃到50℃的温度范围内的某一温度下有个零温度系数点,但是埃弗诺姆镍铬合金的温度系数曲线要平坦得多。使用特殊的拉丝和退火工艺,可以进一步改善温度系数,使得电阻丝的特性适合特定应用的要求。埃弗诺姆镍铬合金每密耳园-英尺(circular mil-foot)(CMF)的电阻值为800 Ω,锰铜每密耳园-英尺的电阻值为280Ω。
NlST保存欧姆的方法
由于准地实现欧姆很困难,所以各个国家实验室(如NIST)在历都选择了用实物(artifact)来定义法定的国家欧姆的方法。在美国,从1901年到1990年,电阻的法定单位都是由特定的一组锰铜丝的精密线绕电阻器的平均电阻值保存在1Ω的水平的。这组电阻中每个电阻器的标称值均为1Ω。这组电阻中电阻器的数目曾经在5到17个之间变化,但是这组电阻器的平均电阻值则认为是保持恒定的。近进行的欧姆测定表明,该平均电阻值并不是恒定的,但却一直是相当稳定的。除去1948年进行的一次调整以外,NIST保存的欧姆的变化量一直小于10ppm。
当1901年美国的国家标准(NBS,现在的NIST)成立的时候,美国的电阻法定单位是基于汞欧姆的。在当时,汞欧姆的精密测量是在德国的物理技术研究院(PTR,现在的PTB)和英国的国家物理实验室(NPL)进行的。因此,初的1Ω电阻标准是由柏林的奥托·沃夫(Otto Wolff)公司制造的一组Reichsanstalt型的电阻器。在NBS进行的测量表明,这些电阻器的阻值随着气的湿度而变化。1909年改为使用由Rosa开发的密封电阻器。
1909年到1930年,NBS保存的欧姆是由一组10个Rosa型电阻器的平均值构成的。多年来人们发现Rosa型电阻器也有漂移。托马斯(Thomas)在他的研究工作中提出了一种新的电阻器设计方法,提高了稳定性。该设计的主要革新之点在于,先对电阻丝进行充分的退火,然后再把电阻密封于两个同轴的黄铜圆筒之间的干燥空气里。刚刚制成的托马斯型电阻器比经过老化之后的Rosa型电阻器还要稳定。1930年,开始在一参考标准电阻组中引入托马斯型电阻器。1932年Rosa型电阻器由电阻组中撤出,并由托马斯型电阻器代替。1932年对初的托马斯型电阻器的设计进行了改进,通过增加冷却表面的面积和增加电阻丝的直径减小了电阻器的功率系数。直到1990年1月之前,NIST一直用一组5个1933年制造的托马斯型电阻器来保存欧姆。
在1901年,根据105号公法(pubic law)的规定,法定欧姆是以汞欧姆为基础的。当时NBS的1Ω标准电阻器是汞欧姆的接近的实现,并且和PTR及NPL保存的标准进行比较。直到1911年,NBS的汞欧姆测定工作才完成。1914年在NPL及1920年在PTR所作的电阻实验表明,该欧姆比国际欧姆小了约500ppm。在1936年到1939年期间,由NBS、NPL、PTR、LCE(法国的机构,即现在的LCIE)和ETL(日本的机构)所作的进一步的实验证实了这个发现。一个国际委员会建议放弃汞欧姆,采用欧姆作为基本单位,并且从1940年1月1日起生效。由于第二次战,这项变更一直拖延到1948年1月1日才实现。
为了和国际欧姆的约定值一致,1948年1月1日,NBS的电阻标准增加了495ppm。这是从1901年NBS成立以来对欧姆的次调整。在1990年的第二次调整中,对欧姆的数值和漂移率都进行了调整,使之和国际约定值一致。
早期按照欧姆进行的电阻测量是通过把电阻器的电阻值和一个互感器的阻抗相比较来进行的。电感器的阻抗可以通过实际测量电感器的尺寸及所加电流的频率准地计算出来。使用这种方法,NBS能够定欧姆的值,并达到5ppm的估计准度。导出欧姆的另一种方法—用与容抗相比较来代替与感抗相比较—应归功于1956年计算电容器的发展和变压器比较器电桥的发展。使用这种方法,能够将很小的电容器和数值比它100 000 000倍的电容器进行比率比较,而察觉不到测量结果的不定度有所增加。
之前已经谈到,自从1990年1月起,NIST的欧姆的实现已经以量子霍耳效应为基础。
电阻标准表
现在已经有多种电阻标准可以用来保存和传播欧姆。表8—1根据在溯源性链中的地位,按照一标准、二标准或工作标准的下降次序,列出并简单地介绍了几种直流电阻标准。雷尼绍ATOM™微型光栅现可配备全新的ACi PCB接口,该接口采用PCB封装型式,易于安装,因此为空间受限的应用提供了更高的设计灵活性。
ACi接口是2014年随ATOM一起推出的,该接口是一系列开放的高性能微型细分子系统。与ATOM读数头配合使用时,ACi接口提供的数字信号经细分后分辨率可达10nm(20 µm栅距系统),工作速度可达13 m/s(40 MHz计数器频率,40 µm栅距系统)。
ACi PCB集成了雷尼绍现有的业细分技术,并采用易于安装的PCB封装形式。该接口具备与标准ACi接口一样的细分性能,但配有板对板连接器,可直接连接或安装到PCB上,因此无需再使用电缆连接器。这使得读数头可以远离细分盒,从而提高设计灵活性。
例如,一个ATOM读数头可连接一个PCB,而该PCB又可与安装有ACi接口的另一独立PCB相连接。ACiPCB接口兼容所有ATOM光栅,适合空间受限的各种应用。适合使用这种新接口的潜在高应用包括运动控制、医疗和后半导体行业等。
关于ATOM
ATOM光栅系统拥有的计量性能,它具有的精度、超低的电子细分误差 (SDE)、极低的抖动、*的信号稳定性和长期可靠性等优点。ATOM在与雷尼绍的细分电子元件结合使用时,可提供高达20m/s的模拟速度和1 nm的数字分辨率。ATOM提供一系列不锈钢型和玻璃型直线栅尺和码盘。ATOM超小型读数头适合多种应用,包括激光扫描、精密微型平台、半导体、医疗应用、DDR电机、显微镜和科研域。此外,ATOM的柔性印刷电路型号的尺寸仅为 x 12.7 mm x 20.5 mm,是各种空间有限的运动控制、检测和测量应用的理想选择。ATOM具有CE认证,由雷尼绍严格按照ISO9001:2008质量控制认证体系制造。与所有雷尼绍光栅一样,ATOM也由一个团队支持,提供真正快捷的化服务。CAL是指系统校准程序,是完成读数头设定必须执行的操作,可优化增量和参考零位信号。校准设置存储在本地内存中,因此在开启设备之后可立即获得性能。不同的接口有不同的校准程序。