网站首页产品展示*工控低价 > Hachen2079310A联名同款欧美工业品IPR 15030054
联名同款欧美工业品IPR 15030054

联名同款欧美工业品IPR 15030054

产品型号: Hachen2079310A

所属分类:低价

更新时间:2023-05-20

浏览次数:409

简要描述:联名同款欧美工业品IPR 15030054
上海荆戈工业控制设备有限公司作为专业的欧洲进口工业件经销商,提供科宝KOBOLD、宝盟BAUMER、COAX、欧博Ophir、盖米GEMU、施耐德Schneider、雄克Schunk、派克parker、霍梅尔Hommel等国内外,为客户提供咨询、采购、售后等服务。

详细说明:

联名同款欧美工业品IPR 15030054

联名同款欧美工业品IPR 15030054

上海荆戈工业控制设备有限公司是国内优质的欧洲进口工业件代理采购商。客户遍及能源化工行业,食品医疗行业,汽车钢铁等各工业行业领域。

我们保证交付的所有产品均直接国外原厂采购,上海海关正规清关,每单包裹均可提供上海海关出具的报关单和原产地工会出具的正规原产地证明。

热烈欢迎新老客户致电询价(*≧▽≦)~

WUERTH 663101252

REBS VEK-A-8/3,Art.Nr:3542799

Funke Warmeaustauscher BCF 603-B3-4 746 955

mts 252182

motrona GV210

Burghardt + Schmidt 65730

AEROQUIP GH793-4 EN853 2SN DN6

Abanaki PMM-09B1

Spieth DSK 60.85

SCHMERSAL TZ/CO

Beck GmbH 6372

Intercontec ASTA-012-NN00-62-0235-200

SCHUNK 0301271 KAS-08G-A-90 KABELSTE. SWA FÜR MT8

Demag AUH 20 DL-B14.1-24-1-12.6

OMAL M376E16L75

IPR 15030054

WUERTH 714524300

Retsch 20.254.0001

LORENZ MESSTECHNIK Option 100% Kontrollsignal

Eletras TM 1000

SR Systems R-FLAT 12/8-MK

WITELS CB 20-80

AREVA T&D 6915235411

Mafag 120387 | 5300-063-001 SN3-GL 63/45-450 DHh

SCHMERSAL AZ/AZM 200-B1-RTPO 101183470

Elaflex TW 75 2.5meter

METAL WORK 7069030132

STAMM 0611230000,Linearteil 10.010 LE-R;4-6";203,2mm

Novotechnik P-2501-A202

WUERTH 071574 47

FasTest FIS663

SIEMENS 6EP4132-0GB00-0AY0

Ahlborn ZA2690UK

MAEDLER 65433045

Meister 50XM1008XG20W

LED scale KSP0320-0001A 24VDC/6W

Walther MD-025-0-WR048-19-1

KRACHT VC 0,4 F1 PS/71

Hachen 2079310A

POSEICO ADS360HVIS56

KROMSCHROEDER Art-Nr 88600158 BCU370WFEU0D3B1

Buehler UNS-29012-005

SCHNEIDER XD2GA8241

AirCom R280-08C

Arobotech GC34366A

sudmo 2143030

Spieth MSR 38.1,5

Kraus & Naimer CH10 D-777K*01 FT2

BURN LWS1200-H29 14095198BE

HBM 1-PX02

WUERTH 7026951

HOHNER SSM11120/4096/4096

Drumag 064450053 SOLVENT PUMP - TYPE: HSZ-A 36/110-DN-3099689 - PRESSURE 6 BAR - TEMPERATURE -10° AT +60°C

SIEMENS 3ND-1822

GUTEKUNST D-362

DANLY 9-0604-26

Sontheimer LT-FH7-001 IEC60947-3 40A

norelem 02040-208

FANDIS FPF12KRD24B-110

GUTEKUNST D-173E

Gestra RK 44 PN 6 - 16, DN 50 MIT SONDERFEDER Poe 20 mbar

Kuntze 19514203K

Steinel SZ 4385.16

WUERTH 695684727

COEM Z2S10-1-20B /V

Multi-Contact 33.0143

Salzer P220-649167

Rexroth R928028410

FILTON CBN/ST, G 2;Nr.: 15472G RH

Rietschoten Typ MR Art.no.10775

SKF SMSW 16LPAST

Buehler 3004999 WW 6/SW

HBM 1-AE101

ABB TB556.J.3.E.50.T.20

HS-Technik HST-AC-12030

Dr.Breit 405032.010-DN30-PN350

heidenhain 383963-03

WUERTH 674010100

Wurth 61363125

heidenhain ID:315422-49 LB302C,ML=12840mm±5µm

Funke 0.0806.2.44-0135/07

FERRAZ PS272PRE

SKF TMMP 3X300

Hillesheim HT43-16P

Vahle 153512 SK-KMK60-20

WUERTH 071531 120

Baumer GT5.05 L/410 12H7

Ahlborn ZA 9020-FS

AirCom DBM-04E

STROMAG 152-01951 70_HGE_890_FV70_A2L

Bruening Pionier Aeroform-filter AE90 MFAP90-6/BRN2N

engmatec 1552-71-000

Stoerk 900210.008

Hoffmann 135650 M8

Bopp&Reuther DIMF2.0TVS-I-51-D15-M-1-H

Heraeus 80132480

Honsberg FW1-015GP006

Datwyler 653616

kendrion Vibrator (OAC007.276201) OAC007002 230V 50Hz 100%ED 162VA 3MM 300MM

Puls SLA3.100

KEM IG 02H

DANFOSS 060g1605

Metrofunk MTZ 26-126 ORANGE 250 M-SPULEN

SIEBENHAAR 33BHN28-07/10

GARLOCK MEC04-12231

HEB BLZNI400-3-100/60/40,00-206/M1 /S4/S5.

Murr 85085

MGV DGH503-2420/B 15.8041.050

DEG ELEKTROGROSSHANDEL 1335422

Tecsis 14240436

b+w BWU2349

Honsberg NJM2-015GM020

Leuze PRK 96K/P-3368-41

Moore MIB-E-PSD023 PSD/4-20MA/PRG/2,3VLP/-ISF [D1LCP]

EGE IGMF 015 GOP

Eaton Y7-31882 ETR4-11-A

ASUTEC ASM-60-EW-08

Rexroth R911171024

MAEDLER 691 114 00

JUMO 202990/02-92-5-13

PMA KS50-102-10000-000

Kelviplast B12H 20 W 4V0H AG1,25"

norelem 07710-3035

EUROTHERM SSP1A125BDT

suco 1-1-70-621-007

Hengstler 0 731 301

METAL WORK 1213400500CP

Pompe Morgan srl PQ40MBY

legrand 0 904 86

rechner LEAK-500-N-S-PVC

Rexroth R900023581 AB32 09/132G-051-01

Pantron Instruments GmbH IT-P10-15

GMC KINAX 3W2-708-144E1/D

MAEDER maeder EP 500-40

PerkinElmer N0780130

Lang 30260

heidenhain 385438-31

PVA PVA-V200

herberholz Typ:AK/DVGW Code.bwm-05-yd-100-10/F01

LoeSi EPM 315 C D Artikelnr.: 100694

brinkmann KC60-UO12+195

Honsberg KM-020GK012-SR

L+B GEL2444 Y007

HEW Typ: RDMF 90 L/12 TVR

DIATEST T-11,0

Lenord+Bauer GEL 208-V-00025G041S

Rotronic-Secomp AG 21.05.6033

FACOM 455B

Vahle 0346507/00

optris Werkprüfsschein mitschicken

Contrinex DW-AD-603-04

EKK 1006172

Ahlborn ALMEMO 2450

NIMAK x1.012.951

Spieth MSA90×2.0

LAPPORT 100336

CARLO GAVAZZI DMC01DB23

Reckmann 1R9-G300A02500K-21BBAX

LISMAR 51.9707.1

fischer DE28 03M285 PL 4-20MA

DEUTSCHMANN V3818

MENZEL SD4SF

Sensor Instruments SPECTRO-3-50-FCL

Hoentzsch A000/515

Sommer-Technik EZ-DH

FLENDER elpex-b 165

SYSTEMAIR 25361, K 125XL

GUTEKUNST D-117K

heidenhain 572251-05

Ahlborn FD8214M20U

Schweiger 821.2.08.3.0032;BEGA120MR11000200400

PH GV-L-35

WHM 40 K7/15309-V-PAZ-PAR

SICK ATM60-A4A0-K06 1032949

ATAS MEZAXIAL 3142

KNF 135689/017505 N035.1.2ANE

TESCUBAL 648FM10

heidenhain 827039-06

Phoenix 2900318 PLC-RPIT- 24UC/21/RW

WUERTH 695347940

Hager SFL125

Honsberg MR-025GM040-SR

MSE 33246027

CHROMALOX wr80

greisinger GDH200-13

HBM 1-LY11-6/120A

booster Code SF-2300V

elbe 0.107.400.0001

Salzer B250-41620-187M1+MGB2-00A02

EKG 275.39B-622900 221K02(50,0 kVar 480Vac 3x229µF K )

boll 1140822 Warennummer 842199

ASA-RT ATB-P150/1500/ASNN

heidenhain 335074-03,3m

wieland 87.200.2203.3 Type: Stecker D-SUB 37

SCHNEIDER XPEA110

ATOS SCLI-40313

HUBA 520.931S033701

KSB Multitec A 50/7A-3.1 10.63 Pumpe ohne Motor

Bruening Pionier AE90(MF090-6/BR2)

heidenhain 291698-50

Rotronic-Secomp AG 30.09.0279

Becker 4.702.480-1 (3m)

Indu-Sol 114090003

EA ZA311062

Ahlborn Mess- und Regelungstechnik GmbH ZA9909AK

GMC SINEAX P530-421122311 Input: 25000/5A 20/0.1kV 50Hz Range: 0-850MW Output: 4-20 mA PS: 85-230VAC/DC

heidenhain 324955-17

W+W Kollektor Typ 450 Artikel-Nr. 101079

Landefeld SI 18 MSV

RICO RIC M 40 S-D-1,5 PTC

Rexroth R911298373 HCS02.1E-W0054-A-03-NNN

Drumag ZLA-C-SHA36/70-D-N

Puls ML30.100

EA UV330103/AF

Helmholz 700-323-1BL00

OTT-JAKOB 95.250.021.3.0

Klaschka DSP-54SG-1S

Maximator MO8-NPT-SMB

Honsberg RWI-016-PVK(BCP8044-500-02-01-13-05)

STS ATM.ECO 104437 0...2bar

Montech SP-64E-40 41135N

METABO 2230x13x0,65 mm,14 TPI 630858000

Kamlock KLDG 20 ES

motrona IT210

WUERTH 7153171

microsonic hps+35/DIU/TC/E/G1

Hilger u.kern Industrietechnik K34-VC0,04-P1-PS

STRASSER Festo-Schnelllauf-Ventilblock #025052

Dressel 1103020506

Christ CAM135 N24-00-0-0000 Art-Nr.: E781200

Schonbuch CBLH 3020

ASSOCIATED 0C0480-0632500M

HAHN+KOLB 1500005538

WIKA 7656552

AVS E22-024/= -H0

RS RK73H1J-KIT RS Best.-Nr. 864-4024

Mahle RD 72x5 1.4301;78314528

Hawe DRH 1

Rexroth R900424149 DBDS 10K 1X/200

heidenhain 355884-01

Mahle Pi 15006 RN MIC 25

AirCom R119-12D+MA6302-25

GUTEKUNST D-063F

Keller PA-23SY/100bar/8159455;222308.1758

Heraeus 9751751

Pneumax 6.01.14N

item 0.0.443.16 PS 4-25

Tippkemper IRS-U-5LA

MAEDLER 67700303

WUERTH 071553 110

WIKA 4482027 Typ: 612.20 0 mbar...100 mbar

Marzocchi ALP2-D-50

SITI TT-MS632-4-0,18B14 Typ: MS 632-4

AREVA T&D 6915238439 TYPE R DN50 PN25

WUERTH 071502 61

elero 760292901 Variante g Hublänge:100 mm

SILVENT 719224; SV921 3N Zink - B=23mm

Hilbig GmbH NO.H25104 , Clip 4,7 WN weiss

Beck 984M.523D14b

Wandres 7933861

ATOS DHZO-AE-073-L5/I

 

应用示例

在机床上必须保证加工工件持续不变的高表面质量。为此需要持续监控冷却润滑剂输送管道的系统压力。利用压力传感器能可靠地检测压力,当偏离规定的压力范围时在几毫秒内关闭机床。

在很多储罐和锅炉中必须连续测量液体的液位高度。因此将使用超声波传感器,它能够无关介质的颜色、透明度和表面特性进行测量。它们能探测几乎所有 (也包括隔音) 材料及液体、颗粒和粉末构成的对象。

传感器技术

压力传感器可量应用于过程和工厂自动化中,也可以应用于储罐以及分配器系统中的压力控制。冷却润滑剂、液压油和气动系统等过程介质的监控对生产工艺有重要影响。

采用不同工作原理的传感器适合用于测量液位

■ 超声波传感器从上方进入储罐,它们不接触介质。

■ 电容式传感器从上方进入储罐,它们接触介质。

■ 磁致伸缩式传感器可以从上方或下方进入储罐。它的位置传感器 接触介质干井校准器作为温度标准,被许多校准实验室和各种工业域广泛使用。,干井校准器的轴向温度均匀性一般不如(往往远远不如)液体恒温槽。垂直温度梯度对校准的影响到底有多?为什么应该考虑使用计量炉来替代干井和液槽?

1、轴向温度均匀性及其对校准误差的影响

干井部和底部的散热速率不同于中间。这是因为与相比,底部隔热更好,不受环境效应的影响。所以在干井内就存在垂直方向的温度梯度。在干井的设计中,尽量在插块的长度范围内实现热量分布,来补偿这种梯度。然而,由于轴向温度均匀性在不同温度下有所变化,所需的热量分布时刻在变化,所以实现以上目的非常困难。

干井中温度计的读数是干井插块中传感器范围内检测到的温度平均值。PRT传感器的具有不同的长度,并且在其护套中的位置也略有不同。将不同类型的传感器(例如将较短的高灵敏度热电偶或热敏电阻与较长的PRT传感器)进行比对,会发生明显的轴向位置差异,使得比较结果受轴向梯度的影响比较。因此,干井式校准器的轴向温度不均匀性对校准误差具有显著的影响。

▲ 图2 660 °C下使用不同PRT时的轴向温度均匀性

▲ 图3 计量炉在不同温度下的轴向温度均匀性

▲ 图4 PRT比对校准,元件长度*相同,660 °C,干井

▲ 图5 PRT元件长度不同时在660 °C下的比对校准结果

2、计量炉有何不同?

为了降低校准误差以及提高现场可用校准器的性能,福禄克计量校准部开发了一种具有双区控制的校准器,称为“计量炉”。计量炉采用了多种新技术,与干井相比,总体性能幅提高。的改进是每个计量炉的整个温度量程内具有优异的轴向温度均匀性。这一改进得益于能够自动调节部区域温度的技术,在任何温度设置下都能程度减小两个温区之间的温差。

3、计量炉与干井式校准器的轴向均匀性比较

实验表明,使用同一干井、在相同温度下、使用两支不同传感器尺寸的PRT时,测量结果变化明显。图2所示为典型干井较差的轴向均匀性。从图中可以看出,测量均匀性的温度计的检测元件短,均匀性表现差,因为每个元件都是对其长度范围内检测到的温度进行平均。从图2和图3可以看出,计量炉的性能具有明显不同在90年代,人们从事计量学工作的方式是,通过仔细的工作建立基本单位,如欧姆、伏特、法拉等,然后再用定标实验来扩展其应用范围。定标就是给量建立一个标尺,其内容是建立基本单位的精已知的倍数。在电学计量中,常用的定标技术是比率。比率就是从某一等的一个量,按比例求出同一个量另一个等的数值。

由于没有国家的比率标准作为依据来校准其它的比率标准,所以对比率装置的评定是一种独立的实验。比率实验必须周密地设计和实施,以便考虑到实验中所有重要的误差来源。作为量的一个值和另一个值之间关系的表达式,比率是无量纲的。

人们一直有一种倾向,认为比率装置不需要校准,对它没有溯源性的要求。这是不对的,因为要能够准地、精密地实现某一个量的某一给定的比率,需要适当的设备、环境和技术。所以,谨慎的计量学家会通过对比率装置进行校准,或者与别的比率装置校准过的其它设备进行比较,来校验比率的准度。

非比率定标技术

用非比率实验建立基本量的倍数的经典例子,是如图9-1所示的用来得到标准千克的倍数和分数的比较实验。

▲ 图9-1 定标和比率

串联电池

电学计量中的一个例子是,使用几个标准电池串联起来,以建立一个等于标准电池平均电压n倍的电压。然后,使用开尔文-瓦利分压器(福禄克公司的720A),用这个已知电压来对另一个10V电平的电压进行标定(stand-ardize)1827年,欧姆在研究电流的工作中发现了用他的名字命名的欧姆定律,为所有现代模拟电路理论和电学测量奠定了基础。1863年,英国科学促进会(British Association)的一个委员会定欧姆的数值为一段规定的铜线的电阻,并称为英制欧姆或B·A·欧姆(British Association Ohm)。1884年,在巴黎举行的国际电气技师会(International Congress 0f Electricians)采用所谓的法定欧姆(1egal Ohm)作为对B·A·欧姆的修正,并将其定义为在0℃的温度下,截面积为1mm2、高106 cm的汞柱的电阻。这个定义后来修改为“质量为 g,高为106.3 cm、截面积恒定的汞柱对于不变的电流所产生的电阻”。

早期的电学实验发现,不同金属的导电率是不同的,并且注意到导体的电阻正比于其导电通路的长度,反比于导体横截面的面积。由于易于获得,所以早期电学实验中使用的电阻器常常是用铁丝作成的。随着这些实验工作变得更加精细,这种电阻器的缺点,如温度系数高等就变得很明显了。

在研究了其它各种可用的金属材料的特性,并发现其不适于制作电阻器以后,人们的注意力转向了各种合金材料。1884年,爱德华·惠斯登(Edward Weston)发现了两种合金,现在称为康铜和锰铜。它们具有低的电阻温度系数和比较高的电阻值等很好的特性。然而,人们发现康铜这种含有55%的铜和45%的镍的合金,由于在和铜相连接时具有比较高的热电动势,不适合用来制作在仪器中使用的电阻器。而相反,锰铜(含有84%的铜、12%的镁、4%的镍)对铜具有很低的热电动势,约2μV/℃。这种材料过去曾经、而且现在仍然广泛用于制作仪器和标准电阻器。

此后,人们又开发了各种其它的台金,进一步改善了其温度系数的特性。其中之一,埃弗诺姆镍铬合金(Evahm)就用来制造今天的校准仪器中使用的多数精密线绕电阻器。依据制作工艺的不同,锰铜和埃弗诺姆镍铬合金在25℃到50℃的温度范围内的某一温度下有个零温度系数点,但是埃弗诺姆镍铬合金的温度系数曲线要平坦得多。使用特殊的拉丝和退火工艺,可以进一步改善温度系数,使得电阻丝的特性适合特定应用的要求。埃弗诺姆镍铬合金每密耳园-英尺(circular mil-foot)(CMF)的电阻值为800 Ω,锰铜每密耳园-英尺的电阻值为280Ω。

NlST保存欧姆的方法

由于准地实现欧姆很困难,所以各个国家实验室(如NIST)在历都选择了用实物(artifact)来定义法定的国家欧姆的方法。在美国,从1901年到1990年,电阻的法定单位都是由特定的一组锰铜丝的精密线绕电阻器的平均电阻值保存在1Ω的水平的。这组电阻中每个电阻器的标称值均为1Ω。这组电阻中电阻器的数目曾经在5到17个之间变化,但是这组电阻器的平均电阻值则认为是保持恒定的。近进行的欧姆测定表明,该平均电阻值并不是恒定的,但却一直是相当稳定的。除去1948年进行的一次调整以外,NIST保存的欧姆的变化量一直小于10ppm。

1901年美国的国家标准(NBS,现在的NIST)成立的时候,美国的电阻法定单位是基于汞欧姆的。在当时,汞欧姆的精密测量是在德国的物理技术研究院(PTR,现在的PTB)和英国的国家物理实验室(NPL)进行的。因此,初的1Ω电阻标准是由柏林的奥托·沃夫(Otto Wolff)公司制造的一组Reichsanstalt型的电阻器。在NBS进行的测量表明,这些电阻器的阻值随着气的湿度而变化。1909年改为使用由Rosa开发的密封电阻器。

1909年到1930年,NBS保存的欧姆是由一组10个Rosa型电阻器的平均值构成的。多年来人们发现Rosa型电阻器也有漂移。托马斯(Thomas)在他的研究工作中提出了一种新的电阻器设计方法,提高了稳定性。该设计的主要革新之点在于,先对电阻丝进行充分的退火,然后再把电阻密封于两个同轴的黄铜圆筒之间的干燥空气里。刚刚制成的托马斯型电阻器比经过老化之后的Rosa型电阻器还要稳定。1930年,开始在一参考标准电阻组中引入托马斯型电阻器。1932年Rosa型电阻器由电阻组中撤出,并由托马斯型电阻器代替。1932年对初的托马斯型电阻器的设计进行了改进,通过增加冷却表面的面积和增加电阻丝的直径减小了电阻器的功率系数。直到1990年1月之前,NIST一直用一组5个1933年制造的托马斯型电阻器来保存欧姆。

1901年,根据105号公法(pubic law)的规定,法定欧姆是以汞欧姆为基础的。当时NBS的1Ω标准电阻器是汞欧姆的接近的实现,并且和PTR及NPL保存的标准进行比较。直到1911年,NBS的汞欧姆测定工作才完成。1914年在NPL及1920年在PTR所作的电阻实验表明,该欧姆比国际欧姆小了约500ppm。在1936年到1939年期间,由NBS、NPL、PTR、LCE(法国的机构,即现在的LCIE)和ETL(日本的机构)所作的进一步的实验证实了这个发现。一个国际委员会建议放弃汞欧姆,采用欧姆作为基本单位,并且从1940年1月1日起生效。由于第二次战,这项变更一直拖延到1948年1月1日才实现。

为了和国际欧姆的约定值一致,1948年1月1日,NBS的电阻标准增加了495ppm。这是从1901年NBS成立以来对欧姆的次调整。在1990年的第二次调整中,对欧姆的数值和漂移率都进行了调整,使之和国际约定值一致。

早期按照欧姆进行的电阻测量是通过把电阻器的电阻值和一个互感器的阻抗相比较来进行的。电感器的阻抗可以通过实际测量电感器的尺寸及所加电流的频率准地计算出来。使用这种方法,NBS能够定欧姆的值,并达到5ppm的估计准度。导出欧姆的另一种方法—用与容抗相比较来代替与感抗相比较—应归功于1956年计算电容器的发展和变压器比较器电桥的发展。使用这种方法,能够将很小的电容器和数值比它100 000 000倍的电容器进行比率比较,而察觉不到测量结果的不定度有所增加。

之前已经谈到,自从1990年1月起,NIST的欧姆的实现已经以量子霍耳效应为基础。

电阻标准表

现在已经有多种电阻标准可以用来保存和传播欧姆。表8—1根据在溯源性链中的地位,按照一标准、二标准或工作标准的下降次序,列出并简单地介绍了几种直流电阻标准。雷尼绍ATOM™微型光栅现可配备全新的ACi PCB接口,该接口采用PCB封装型式,易于安装,因此为空间受限的应用提供了更高的设计灵活性。

ACi接口是2014年随ATOM一起推出的,该接口是一系列开放的高性能微型细分子系统。与ATOM读数头配合使用时,ACi接口提供的数字信号经细分后分辨率可达10nm(20 µm栅距系统),工作速度可达13 m/s(40 MHz计数器频率,40 µm栅距系统)。

ACi PCB集成了雷尼绍现有的业细分技术,并采用易于安装的PCB封装形式。该接口具备与标准ACi接口一样的细分性能,但配有板对板连接器,可直接连接或安装到PCB上,因此无需再使用电缆连接器。这使得读数头可以远离细分盒,从而提高设计灵活性。

例如,一个ATOM读数头可连接一个PCB,而该PCB又可与安装有ACi接口的另一独立PCB相连接。ACiPCB接口兼容所有ATOM光栅,适合空间受限的各种应用。适合使用这种新接口的潜在高应用包括运动控制、医疗和后半导体行业等。

关于ATOM

ATOM光栅系统拥有的计量性能,它具有的精度、超低的电子细分误差 (SDE)、极低的抖动、*的信号稳定性和长期可靠性等优点。ATOM在与雷尼绍的细分电子元件结合使用时,可提供高达20m/s的模拟速度和1 nm的数字分辨率。ATOM提供一系列不锈钢型和玻璃型直线栅尺和码盘。ATOM超小型读数头适合多种应用,包括激光扫描、精密微型平台、半导体、医疗应用、DDR电机、显微镜和科研域。此外,ATOM的柔性印刷电路型号的尺寸仅为 x 12.7 mm x 20.5 mm,是各种空间有限的运动控制、检测和测量应用的理想选择。ATOM具有CE认证,由雷尼绍严格按照ISO9001:2008质量控制认证体系制造。与所有雷尼绍光栅一样,ATOM也由一个团队支持,提供真正快捷的化服务。CAL是指系统校准程序,是完成读数头设定必须执行的操作,可优化增量和参考零位信号。校准设置存储在本地内存中,因此在开启设备之后可立即获得性能。不同的接口有不同的校准程序。



留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7