联名同款欧美工业品EGE SC 440/1-A4-GSP
联名同款欧美工业品EGE SC 440/1-A4-GSP
上海荆戈工业控制设备有限公司是国内优质的欧洲进口工业件代理采购商。客户遍及能源化工行业,食品医疗行业,汽车钢铁等各工业行业领域。
我们保证交付的所有产品均直接国外原厂采购,上海海关正规清关,每单包裹均可提供上海海关出具的报关单和原产地工会出具的正规原产地证明。
热烈欢迎新老客户致电询价(*≧▽≦)~
ZEVATRON LS199195170Z
Luedecke ESD 14 NA
Gestra CB 26 DN150PN6-40 FPM
Walther 310419 20A 4P 480V 7h IP44
MESSTECHNIK Tasterbox TB16;Anr.820-2110;Snr.0669
AREVA T&D 6915238439 TYPE R DN50 PN25
GUTEKUNST VD-283A
Ahlborn FT015L0300+OTK01L0050
suco 0570-46714-1-001
DANLY 9-1205-21
Duplomatic C22S3-D24K1/11
Gemue 615 15D 1121411/N
PINET 14-7-3574
HBM 1-SLB700A/06-1
Bremer BV.28247
SIEMENS C79451-A3458-S401
OTT-JAKOB 95.101.596.9.2
MAFU 3Z120-160-00100
Baumer TE2-1.9.7050.0050.0
DUESTERLOH KM63ZAVF
Baumer ITD 27 A 4 Y11 0004 H BX KR1 S 14 IP40
Phoenix 2981020 PSR-SCP-24DC/ ESP4/2X1/1X2
WUERTH 71425112
BEKO S050WWF
ISIMOTION ISH5 -1050-30-560-R
Alemite WHEEL/ALEMITE 337997
HYDROTECHNIK 31199 33JC-79-35.V012G
EGE SC 440/1-A4-GSP
Staubli NCB20.7105/IC/VR/KR/JE
GUTEKUNST D-207KR
SIAT S7802596ZZZ K11 VERSCHLIESSEINHEIT-UNTEN
heidenhain 770902-15
SCANCON SCA24-1000-D-04x20-64-03-B
Surkon SP03M039
AEG Thyro-A 2A 400-130 HRL3
IXXAT 1.01.0103.00000
Ac-motoren Base for IE2AC09L6000 Drehstrom-Asynchronmotor FCPA 90 L 6/HE
EA VH310025-EE620552
STROMAG typ:AC 64-50
AMPHENOL PT02E10-6P
Schlegel MHR-3
Freudenberg BFA 16 12 13
NETTER GMBH VAC 12
PURTEC M 1135 2 Stück Gummipuffer GP-EZ-25x17-M8 + Gewindestift
FAUDI 8961591
Rossel 2-7600-00066-11 Thermoelement-Stecker Fe-CuNi (Typ J)
LORENZ D-DR1/M325-G21 DR1 Drehmomentsensor rot. 25N·m 0,1%
Giacomello RL/G1-1”-S2 L=500 mm
riegler 103885 CHECK VALVE 9227.35 G 1 1/4"
ROLAND ELECTRONIC GmbH P42AGS
PFANNENBERG DS10 P/N:23111100000 AC230V;0,06A;IP67
HBM 1-T22/5NM
Schubert & Salzer 7010/032V102011
parker SCP01-010-34-07
JUMO 701150/8-02-0253-2001-23/005
WUERTH 899811
Carter Dichtsatz K76/0-2860-3(für TYP: ZIU G 0-2860-3)
asphericon 010304-023-03B
WUERTH 6134733
BD sensor DMP 331-110-6001-1-3-100-N40-1-000,108942
Honsberg HD1K-015GM010
parker 7889FIL;SA-A 3/4 X 3
Allen Bradly 440H-S34021
Walther HP-004-0-XX002-12-1
Chiaravalli RCK11-120/165
SCHUNK 20018362
Vulkoprin PU.UH 60/20/6203/317 ZZ
Tematec WT075-1174
MAGNET-PHYSIK HS-AGB5-4805,280078
Hoentzsch B099/000 VS16A-350
Stäubli ConnectorID/S 10BV-C1
GUTEKUNST D-206C
WUERTH 61313305
Prevost PUCR M0710100
SEEMATZ Artikelnr:EFN-2-30/133-1 Main control card HGS
walton W 05.032 S
Walther LP-019-2-WR026-11-2
heidenhain plug 291698-04
DESMI 846126 MOTOR 4A 100 L-6 1,5/1,8KW
MACHEREY-NAGEL 740606 NucleoSpin Filters (50)
Dopag 401.02.00.01
tebulo TM110007R00P000 / TM110007R00P000
WUERTH 713304421
Honsberg TF1-070M015HO
Branson 101-132-2075
PEAK IPEH-004038
primarc pm7098
Meusburger E1110/10-36
heidenhain 375137-01
Honsberg HD1KVZ-020GM025
Ahlborn MA26908AKSU
Eaton SV1-16N-C-0-240AG 20W;0.09A material no.10227129
Maximator 3630.1174 Ersatzteil-Kit-Ventile DLE 2(5) / VP16.08.69(für DLE 2-2)
heidenhain 1169566-53
Honsberg VM.WPS.15.RI.IP44-1/2 BSP 2-6 L/min
Klaschka BDIW-1.4-24VDC
Datwyler 653610
SenoTec R3E-8/16L 12
Bucher SWUVPZ-1NCO-BT-FA-6-24V-DC
W+W 101078
Buerklin 12H2392
Honsberg RRI-025GVQ160V10KEK-SR
SCHNEIDER RHK412F
FERNCO PRX3003-22
AirCom Artikel: R119-16J, G2, 0.2...18bar
CEAG 10545 AM72 n/1A
Ringspann 4822-057504-030H33 Freilauf FBF 57 SFT im UZS Bohrung D = 30 H7, Nut 8JS10x3,3
SIKO DA09S02-150-2-E-20
heidenhain 760939-18
riegler MV 1369 G
FSG PW70dA,1708Z03-065.011
ELECTRONICON E62.F81-203D10
EMG TW54C5/5M
Walther 57-G08-2-XX002-07-2
Eaton Hansen B10T41BS
suco 0165-44914-1-001(5bar-50bar)
norelem 03108-102
Burster Praezisionsmesstechnik GmbH & Co KG 2488307
GUTEKUNST RZ-115V-34X
HAKON BR136X20X47
Lovato 11RF933; RF9 2-3.3A
HBM 1-U2B/2KN
Mahle LX 1829
TBH 16199
WUERTH 71330142
Wilh. LAMBRECHT GmbH 00.14575.200004
WOERNER VPA-B/12/0/0/0/o9/o9/o9/o9/o9/o9/V
HMS AB7694
METRIX MX2034-01-01-05-05-01-005 (replacement for TXR-335-010)
BIERI 3679393 WV700-6-3/3-K-24-V-A*00
GMC KINAX 3W2-708-113D1/D
Ahlborn FHAD46C2L05
TRAFAG DCS250.0AR SN:441280-018 8864.74.2315.38.19.23
fuerniss 23-299 RH
WIKA HP-2-S P#40249166
INTERNORMEN 301797 01.E 330.10VG.16.E.P
STROMAG 70HGE590FV70A1R
MEMOTEC GmbH SLF-00-P-16+E-500+SA.BO
binder Nr.7641020;Type:76 431-08H07, VAR 0001, 24V DC, 6NM
NIBCO T111 3/4 THD 125# RS GATE BRZ
EA EA300029
ROXSPUR PM6420-010-119
DIATEST T-1,75
parker TRAP2/100-G230/P
Buehler BTHDSFL-1-200-K-2-1
SERTO SO-42521-12-1/2
carel 2597543
DEPRAG NG40
IMTRON TSA-FIL2-A3-50/100-BS-V2
heidenhain 689678-06
WUERTH 98600
WUERTH 984650100
PULSOTRONIC 9814-1100
Yamaichi Y-CONTOOL-30|D
Roemer 348833, 945M-22-3/4
DINSE SE 70/95
PMA DKLK-R56X56
Mafag 100805 | OS03002400N7S22
Walther MD-019-2-WR526-19-1
HBM AE301
SERTO SO 51221-6-1/8
Z-LASER ZR0000098 type Z20R-635-L90
Honsberg HD1KVO-025GM060-940487
ZIEHL RG35P-4DK.7M.1L 110653E
Druck PMP5026-TD-A2-CA-H0-PA 0 bar bis 35bar Relativdruck
WUERTH 071505 11
SELET K1320POC5
heidenhain id:511395-03
Contrinex LLS-1050-204
rechner KA0264 KAS-80-26/113-A-G1-PTFE-90C-Z02-1-2G-1/2D
speck Y-2951.0134
BD sensor DMD 331-730-E-2501-E-8-100-J00-1-000
Wurth 071572 56
KARL DEUTSCH STS 3 WB 10 C 1,0 m Kabel, Lemo1 seitl. Bestellnummer 1598.8692
IMC FA-RUN
ZEVATRON H 20
JAGER 6321 ST B8×10
Thermocoax 1 Nc Ac 15 40m
Spectre 1000-A(-10"WC to 20" WC)-5-D-5-EC3-OP5
Honeywell 943-F4V-2D-1D0-180E
Spieth MSR 30.1,5
R&H R&H 200.406.01 m. 66 % 13224
WUERTH 626000004
Landefeld DNT 3434 IA MS
L.G.M. CVX02N200BV
Hoffmann 962653 9
Keller LEO2 / 300bar / 81021.1
AirCom PRA32-0600
Walther V0910175000
Crane AMBD2B100F
motrona UZ210
SCHNEIDER KSB32CM55
Amtec H-9.405
JK Pneumatik Ri12X34ES
pall HM54420
WIKA 14234716 Typ P-30
Elster MR25 SF 10
EUROTHERM EPOWER/1PH- 250A/600V/230V/XXX/XXX/XXX/OO/XX/XX/XX/XX/XX a-nr:490514
Demag WUE 40 DD - ZBA 100 B 4 B050
Mahle PI 2108-069 NBR
berker 1025389 BERKER 0962622505 Steckdose
Luedecke ESH 38 NA
EGE SDN11595
WUERTH 555512210
Montabert 86269925
ESCHA 8013058 FSM4-2SKP3/S89
hydac 921781 HFS 2536-1S-04,0-0020-7-B-0-000
fischer 09007162 adapter vag 1381/5a(9)durchm.20*195 lang
Goetze LWD 76.90 H- 28 NB60; 318X341X38
JUMO 402050/000-458-405-613-20-61/000 Teile-Nr.: 43009172
Druck PTX5072-TC-A1-CA-HO-PA; 0 bar bis 6 bar Relativdruck
WUERTH 071471 31
RATIOPLAST ACM 1-3 05504-01
Schlegel MTO
BTR 11061325 KRA-M4/1 24 V DC
heidenhain 593449-01
hilscher NT50-RS-EN
Sera 90036673 Ventil-Set PVC-U DN8
SAUTER 148575;SRC 025-30-4P
KB KBSI-240D
Beck 901.20111D4 Pressure rang: -35±5kPa / -25±5kPa
AHP Merkle Artikel 013960 BZ 500.80/50.77.201.032
mpfiltri DLE12VA50P01
Beck 16645-0066+6372
WUERTH 98600
NILOS 6208.ZJV
GUTEKUNST RZ-008I
ACROMAG TT333-0700
WUERTH 89170007
Wolfgang 2900.57
Vogt 5002.99
ATLANTA 6591025
Multi-Contact 28.0124-15021
asco SCE353A237.24/DC
MOLL Y3HE-90L6B35;1,1kW/IE2
LAPPORT 100277
Ehrler & Beck GmbH 2 BH 7210 0AH16-7
heidenhain 681186-03
HBM 1-MP60DP
GUDEL 10182872 Gearbox unit HPG090-A3-5.00-PS-0-0-0.0-R165/d11-S130/t5.5-d32
STOGRA M16x1,5 Typ EMV-Perfect Messing
PINET 14-7-3337
TESCUBAL CML16 M16
heidenhain 1132407-03
AirCom F950-5-050-B80
burkert 138100
EMOD TM63S/4T Motor-Nr. 8097919
WUERTH 7152770
marinersystems MS3050
Yamaichi Y-CONTOOL-20
SCHNEIDER C-TEC 2440P
Landefeld GT 11432 K ES
Hoentzsch Art Nr:A018/052, analog end value 0-3m/s=4-20mA
OMAL D101H003
Elaflex ERV-G250.10FVZ.ZS
DIATEST 37.T6.0
BEKO 2002699 BEKOMAT 13 CO PN 50
ASA-RT ATB-P1000/2500/JINN
ecolab PDP00030PP06FPVAPP0614142121ME
SPS BU25-D
ILMVAC 400732
IFM E11310 MOUNTING PLATE IND
应用示例
在机床上必须保证加工工件持续不变的高表面质量。为此需要持续监控冷却润滑剂输送管道的系统压力。利用压力传感器能可靠地检测压力,当偏离规定的压力范围时在几毫秒内关闭机床。
在很多储罐和锅炉中必须连续测量液体的液位高度。因此将使用超声波传感器,它能够无关介质的颜色、透明度和表面特性进行测量。它们能探测几乎所有 (也包括隔音) 材料及液体、颗粒和粉末构成的对象。
传感器技术
压力传感器可量应用于过程和工厂自动化中,也可以应用于储罐以及分配器系统中的压力控制。冷却润滑剂、液压油和气动系统等过程介质的监控对生产工艺有重要影响。
采用不同工作原理的传感器适合用于测量液位
■ 超声波传感器从上方进入储罐,它们不接触介质。
■ 电容式传感器从上方进入储罐,它们接触介质。
■ 磁致伸缩式传感器可以从上方或下方进入储罐。它的位置传感器 接触介质干井校准器作为温度标准,被许多校准实验室和各种工业域广泛使用。,干井校准器的轴向温度均匀性一般不如(往往远远不如)液体恒温槽。垂直温度梯度对校准的影响到底有多?为什么应该考虑使用计量炉来替代干井和液槽?
1、轴向温度均匀性及其对校准误差的影响
干井部和底部的散热速率不同于中间。这是因为与相比,底部隔热更好,不受环境效应的影响。所以在干井内就存在垂直方向的温度梯度。在干井的设计中,尽量在插块的长度范围内实现热量分布,来补偿这种梯度。然而,由于轴向温度均匀性在不同温度下有所变化,所需的热量分布时刻在变化,所以实现以上目的非常困难。
干井中温度计的读数是干井插块中传感器范围内检测到的温度平均值。PRT传感器的具有不同的长度,并且在其护套中的位置也略有不同。将不同类型的传感器(例如将较短的高灵敏度热电偶或热敏电阻与较长的PRT传感器)进行比对,会发生明显的轴向位置差异,使得比较结果受轴向梯度的影响比较。因此,干井式校准器的轴向温度不均匀性对校准误差具有显著的影响。
▲ 图2 660 °C下使用不同PRT时的轴向温度均匀性
▲ 图3 计量炉在不同温度下的轴向温度均匀性
▲ 图4 PRT比对校准,元件长度*相同,660 °C,干井
▲ 图5 PRT元件长度不同时在660 °C下的比对校准结果
2、计量炉有何不同?
为了降低校准误差以及提高现场可用校准器的性能,福禄克计量校准部开发了一种具有双区控制的校准器,称为“计量炉”。计量炉采用了多种新技术,与干井相比,总体性能幅提高。的改进是每个计量炉的整个温度量程内具有优异的轴向温度均匀性。这一改进得益于能够自动调节部区域温度的技术,在任何温度设置下都能程度减小两个温区之间的温差。
3、计量炉与干井式校准器的轴向均匀性比较
实验表明,使用同一干井、在相同温度下、使用两支不同传感器尺寸的PRT时,测量结果变化明显。图2所示为典型干井较差的轴向均匀性。从图中可以看出,测量均匀性的温度计的检测元件短,均匀性表现差,因为每个元件都是对其长度范围内检测到的温度进行平均。从图2和图3可以看出,计量炉的性能具有明显不同在90年代,人们从事计量学工作的方式是,通过仔细的工作建立基本单位,如欧姆、伏特、法拉等,然后再用定标实验来扩展其应用范围。定标就是给量建立一个标尺,其内容是建立基本单位的精已知的倍数。在电学计量中,常用的定标技术是比率。比率就是从某一等的一个量,按比例求出同一个量另一个等的数值。
由于没有国家的比率标准作为依据来校准其它的比率标准,所以对比率装置的评定是一种独立的实验。比率实验必须周密地设计和实施,以便考虑到实验中所有重要的误差来源。作为量的一个值和另一个值之间关系的表达式,比率是无量纲的。
人们一直有一种倾向,认为比率装置不需要校准,对它没有溯源性的要求。这是不对的,因为要能够准地、精密地实现某一个量的某一给定的比率,需要适当的设备、环境和技术。所以,谨慎的计量学家会通过对比率装置进行校准,或者与别的比率装置校准过的其它设备进行比较,来校验比率的准度。
非比率定标技术
用非比率实验建立基本量的倍数的经典例子,是如图9-1所示的用来得到标准千克的倍数和分数的比较实验。
▲ 图9-1 定标和比率
串联电池
电学计量中的一个例子是,使用几个标准电池串联起来,以建立一个等于标准电池平均电压n倍的电压。然后,使用开尔文-瓦利分压器(福禄克公司的720A),用这个已知电压来对另一个10V电平的电压进行标定(stand-ardize)1827年,欧姆在研究电流的工作中发现了用他的名字命名的欧姆定律,为所有现代模拟电路理论和电学测量奠定了基础。1863年,英国科学促进会(British Association)的一个委员会定欧姆的数值为一段规定的铜线的电阻,并称为英制欧姆或B·A·欧姆(British Association Ohm)。1884年,在巴黎举行的国际电气技师会(International Congress 0f Electricians)采用所谓的法定欧姆(1egal Ohm)作为对B·A·欧姆的修正,并将其定义为在0℃的温度下,截面积为1mm2、高106 cm的汞柱的电阻。这个定义后来修改为“质量为 g,高为106.3 cm、截面积恒定的汞柱对于不变的电流所产生的电阻”。
早期的电学实验发现,不同金属的导电率是不同的,并且注意到导体的电阻正比于其导电通路的长度,反比于导体横截面的面积。由于易于获得,所以早期电学实验中使用的电阻器常常是用铁丝作成的。随着这些实验工作变得更加精细,这种电阻器的缺点,如温度系数高等就变得很明显了。
在研究了其它各种可用的金属材料的特性,并发现其不适于制作电阻器以后,人们的注意力转向了各种合金材料。1884年,爱德华·惠斯登(Edward Weston)发现了两种合金,现在称为康铜和锰铜。它们具有低的电阻温度系数和比较高的电阻值等很好的特性。然而,人们发现康铜这种含有55%的铜和45%的镍的合金,由于在和铜相连接时具有比较高的热电动势,不适合用来制作在仪器中使用的电阻器。而相反,锰铜(含有84%的铜、12%的镁、4%的镍)对铜具有很低的热电动势,约2μV/℃。这种材料过去曾经、而且现在仍然广泛用于制作仪器和标准电阻器。
此后,人们又开发了各种其它的台金,进一步改善了其温度系数的特性。其中之一,埃弗诺姆镍铬合金(Evahm)就用来制造今天的校准仪器中使用的多数精密线绕电阻器。依据制作工艺的不同,锰铜和埃弗诺姆镍铬合金在25℃到50℃的温度范围内的某一温度下有个零温度系数点,但是埃弗诺姆镍铬合金的温度系数曲线要平坦得多。使用特殊的拉丝和退火工艺,可以进一步改善温度系数,使得电阻丝的特性适合特定应用的要求。埃弗诺姆镍铬合金每密耳园-英尺(circular mil-foot)(CMF)的电阻值为800 Ω,锰铜每密耳园-英尺的电阻值为280Ω。
NlST保存欧姆的方法
由于准地实现欧姆很困难,所以各个国家实验室(如NIST)在历都选择了用实物(artifact)来定义法定的国家欧姆的方法。在美国,从1901年到1990年,电阻的法定单位都是由特定的一组锰铜丝的精密线绕电阻器的平均电阻值保存在1Ω的水平的。这组电阻中每个电阻器的标称值均为1Ω。这组电阻中电阻器的数目曾经在5到17个之间变化,但是这组电阻器的平均电阻值则认为是保持恒定的。近进行的欧姆测定表明,该平均电阻值并不是恒定的,但却一直是相当稳定的。除去1948年进行的一次调整以外,NIST保存的欧姆的变化量一直小于10ppm。
当1901年美国的国家标准(NBS,现在的NIST)成立的时候,美国的电阻法定单位是基于汞欧姆的。在当时,汞欧姆的精密测量是在德国的物理技术研究院(PTR,现在的PTB)和英国的国家物理实验室(NPL)进行的。因此,初的1Ω电阻标准是由柏林的奥托·沃夫(Otto Wolff)公司制造的一组Reichsanstalt型的电阻器。在NBS进行的测量表明,这些电阻器的阻值随着气的湿度而变化。1909年改为使用由Rosa开发的密封电阻器。
1909年到1930年,NBS保存的欧姆是由一组10个Rosa型电阻器的平均值构成的。多年来人们发现Rosa型电阻器也有漂移。托马斯(Thomas)在他的研究工作中提出了一种新的电阻器设计方法,提高了稳定性。该设计的主要革新之点在于,先对电阻丝进行充分的退火,然后再把电阻密封于两个同轴的黄铜圆筒之间的干燥空气里。刚刚制成的托马斯型电阻器比经过老化之后的Rosa型电阻器还要稳定。1930年,开始在一参考标准电阻组中引入托马斯型电阻器。1932年Rosa型电阻器由电阻组中撤出,并由托马斯型电阻器代替。1932年对初的托马斯型电阻器的设计进行了改进,通过增加冷却表面的面积和增加电阻丝的直径减小了电阻器的功率系数。直到1990年1月之前,NIST一直用一组5个1933年制造的托马斯型电阻器来保存欧姆。
在1901年,根据105号公法(pubic law)的规定,法定欧姆是以汞欧姆为基础的。当时NBS的1Ω标准电阻器是汞欧姆的接近的实现,并且和PTR及NPL保存的标准进行比较。直到1911年,NBS的汞欧姆测定工作才完成。1914年在NPL及1920年在PTR所作的电阻实验表明,该欧姆比国际欧姆小了约500ppm。在1936年到1939年期间,由NBS、NPL、PTR、LCE(法国的机构,即现在的LCIE)和ETL(日本的机构)所作的进一步的实验证实了这个发现。一个国际委员会建议放弃汞欧姆,采用欧姆作为基本单位,并且从1940年1月1日起生效。由于第二次战,这项变更一直拖延到1948年1月1日才实现。
为了和国际欧姆的约定值一致,1948年1月1日,NBS的电阻标准增加了495ppm。这是从1901年NBS成立以来对欧姆的次调整。在1990年的第二次调整中,对欧姆的数值和漂移率都进行了调整,使之和国际约定值一致。
早期按照欧姆进行的电阻测量是通过把电阻器的电阻值和一个互感器的阻抗相比较来进行的。电感器的阻抗可以通过实际测量电感器的尺寸及所加电流的频率准地计算出来。使用这种方法,NBS能够定欧姆的值,并达到5ppm的估计准度。导出欧姆的另一种方法—用与容抗相比较来代替与感抗相比较—应归功于1956年计算电容器的发展和变压器比较器电桥的发展。使用这种方法,能够将很小的电容器和数值比它100 000 000倍的电容器进行比率比较,而察觉不到测量结果的不定度有所增加。
之前已经谈到,自从1990年1月起,NIST的欧姆的实现已经以量子霍耳效应为基础。
电阻标准表
现在已经有多种电阻标准可以用来保存和传播欧姆。表8—1根据在溯源性链中的地位,按照一标准、二标准或工作标准的下降次序,列出并简单地介绍了几种直流电阻标准。雷尼绍ATOM™微型光栅现可配备全新的ACi PCB接口,该接口采用PCB封装型式,易于安装,因此为空间受限的应用提供了更高的设计灵活性。
ACi接口是2014年随ATOM一起推出的,该接口是一系列开放的高性能微型细分子系统。与ATOM读数头配合使用时,ACi接口提供的数字信号经细分后分辨率可达10nm(20 µm栅距系统),工作速度可达13 m/s(40 MHz计数器频率,40 µm栅距系统)。
ACi PCB集成了雷尼绍现有的业细分技术,并采用易于安装的PCB封装形式。该接口具备与标准ACi接口一样的细分性能,但配有板对板连接器,可直接连接或安装到PCB上,因此无需再使用电缆连接器。这使得读数头可以远离细分盒,从而提高设计灵活性。
例如,一个ATOM读数头可连接一个PCB,而该PCB又可与安装有ACi接口的另一独立PCB相连接。ACiPCB接口兼容所有ATOM光栅,适合空间受限的各种应用。适合使用这种新接口的潜在高应用包括运动控制、医疗和后半导体行业等。
关于ATOM
ATOM光栅系统拥有的计量性能,它具有的精度、超低的电子细分误差 (SDE)、极低的抖动、*的信号稳定性和长期可靠性等优点。ATOM在与雷尼绍的细分电子元件结合使用时,可提供高达20m/s的模拟速度和1 nm的数字分辨率。ATOM提供一系列不锈钢型和玻璃型直线栅尺和码盘。ATOM超小型读数头适合多种应用,包括激光扫描、精密微型平台、半导体、医疗应用、DDR电机、显微镜和科研域。此外,ATOM的柔性印刷电路型号的尺寸仅为 x 12.7 mm x 20.5 mm,是各种空间有限的运动控制、检测和测量应用的理想选择。ATOM具有CE认证,由雷尼绍严格按照ISO9001:2008质量控制认证体系制造。与所有雷尼绍光栅一样,ATOM也由一个团队支持,提供真正快捷的化服务。CAL是指系统校准程序,是完成读数头设定必须执行的操作,可优化增量和参考零位信号。校准设置存储在本地内存中,因此在开启设备之后可立即获得性能。不同的接口有不同的校准程序。